首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   36篇
  国内免费   31篇
大气科学   1篇
地球物理   38篇
地质学   156篇
海洋学   22篇
综合类   5篇
自然地理   1篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   6篇
  2018年   8篇
  2017年   6篇
  2016年   12篇
  2015年   8篇
  2014年   14篇
  2013年   13篇
  2012年   12篇
  2011年   7篇
  2010年   10篇
  2009年   13篇
  2008年   12篇
  2007年   7篇
  2006年   13篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   6篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1998年   4篇
  1997年   9篇
  1996年   5篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1991年   4篇
  1989年   4篇
  1988年   1篇
  1985年   1篇
排序方式: 共有223条查询结果,搜索用时 531 毫秒
81.
由于赤羌坪地质环境条件及不利气象因素影响,致使古滑坡复活,直接威胁当地群众生命财产及道路交通安全。本文在滑坡地质灾害勘查的基础上,分析了影响滑坡稳定性的因素,采用剩余推力传递法进行滑坡稳定性定量评价,得出:天然状态下,滑坡处于不稳定状态,在持续降雨及强降雨作用下,稳定程度进一步降低,随时有大规模滑动破坏的危险。为此,提出了"排水+锚索抗滑桩支挡"工程治理方案对滑坡进行工程治理。  相似文献   
82.
贵州中生代变形主要发生在燕山期,发育三幕褶皱变形、两幕逆冲和三幕走滑。根据区域对比、卷入褶皱的地层和褶皱间的叠加关系,判断三期褶皱的形成顺序依次为近东西向、北东向和南北向,时限在J3—K2之间。逆冲推覆构造主要由向北西或西逆冲的近南北向逆冲断层组成,大体与南北向褶皱同时形成; 自雪峰构造带西缘向西,依次划分出根部带、中部带和前锋带。但是,在根部带识别出两幕逆冲推覆,其它两带各识别出一幕。走滑断层也有3个方向:东西向、北东向和近南北向。东西向走滑断层呈现出右行压扭的运动学特征,而大多数北东向走滑断层是左行张扭性质的。依据各个方向断层间的切割和限制关系,推测东西向走滑断层最早形成,其次是南北向逆冲断层,北东向走滑断层最晚活动。这些断裂和褶皱特征,总体表现出贵州多重多种复合联合的构造特征,最后,探讨了本区的构造成因模式。  相似文献   
83.
针对一个并联式涡轮基组合循环(Turbine Based Combined Cycle, TBCC)发动机排气系统的气动方案,对其在整个飞行包线范围内典型工作点上的流场进行了数值模拟研究,获得了飞行包线范围内排气系统相应的推力系数、升力、俯仰力矩随飞行马赫数的变化关系。计算结果显示,在整个飞行包线范围内,排气系统的轴向推力系数随着飞行马赫数先减小后增大,在跨声速飞行时降到最低 Ma=0.9,涡喷不加力时为0.562,加力时0.662),在设计点附近达到最大;升力和俯仰力矩性能在亚声速及跨声速飞行时较差,在超声速飞行时随着飞行马赫数增加逐渐好转。表明排气系统在跨声速飞行范围内工作时应采取措施以改善其性能。   相似文献   
84.
八家子铅锌矿田位于华北地台之燕山台褶带内之辽西台陷南部边缘,靠近山海关隆起。地层为燕山型中、上元古界、侏罗系,中生代花岗岩为印支—早燕山期碱厂“S”型同运动似斑状花岗岩超单元、燕山中晚期圣宗庙“Ⅰ”型花岗岩两个序列。构造应变图形复杂可分为印支期褶皱推覆构造系统,燕山中期出现的裂谷盆地和正断层系组成的伸展构造系统,燕山晚期形成的逆冲推覆构造系统,燕山末期出现的走滑构造系统。逆冲推覆构造系统沿八家子盆地东缘和北西缘分布,控制铅锌矿床的就位与分布,为成矿期构造。八家子铅辞矿床为矽卡岩型热液矿床,与圣宗庙“Ⅰ”型花岗岩超单元有成因联系,特别是与晚期岩浆热液活动密切相关,受逆冲推覆构造的控制。  相似文献   
85.
The Reguibat Shield comprises a western “Archaean terrane” and eastern “Eburnean terrane” juxtaposed during the early Palaeoproterozoic Eburnean Orogeny. Metasedimentary rocks of probable Palaeoproterozoic age are preserved as flat-lying klippen (Kediat Ijil and Guelb Zednes) and steep imbricate zones (El Mahaoudat range and Sfariat Belt). These are interpreted to record a phase of thrust tectonics that emplaced a continental margin succession onto a composite Archaean foreland prior to ca. 2.06 Ga sinistral transcurrent deformation. Together, these events reflect partitioned Eburnean transpression.  相似文献   
86.
The Rathjen Gneiss is the oldest and structurally most complex of the granitic intrusives in the southern Adelaide Fold‐Thrust Belt and therefore provides an important constraint on the timing of the Delamerian Orogen. Zircons in the Rathjen Gneiss show a complex growth history, reflecting inheritance, magmatic crystallisation and metamorphism. Both single zircon evaporation (‘Kober’ technique) and SHRIMP analysis yield best estimates of igneous crystallisation of 514 ± 5 Ma, substantially older than other known felsic intrusive ages in the southern Adelaide Fold‐Thrust Belt. This age places an older limit on the start of the Delamerian metamorphism and is compatible with known stratigraphic constraints suggesting the Early Cambrian Kanmantoo Group was deposited, buried and heated in less than 20 million years. High‐U overgrowths on zircons were formed during subsequent metamorphism and yield a 206Pb/238U age of 503 ± 7 Ma. The Delamerian Orogeny lasted no more than 35 million years. The emplacement of the Rathjen Gneiss as a pre‐ or early syntectonic granite is emphasised by its geochemical characteristics, which show affiliations with within‐plate or anorogenic granites. In contrast, younger syntectonic granites in the southern Adelaide Fold‐Thrust Belt have geochemical characteristics more typical of granites in convergent orogens. The Early Ordovician post‐tectonic granites then mark a return to anorogenic compositions. The sensitivity of granite chemistry to changes in tectonic processes is remarkable and clearly reflects changes in the contribution of crust and mantle sources.  相似文献   
87.
《Geodinamica Acta》2013,26(3-4):299-316
Western Anatolia (Turkey) is a region of widespread active N-S continental extension that forms the eastern part of the Aegean extensional province. The extension in the region is expressed by two distinct/different structural styles, separated by a short-term gap: (1) rapid exhumation of metamorphic core complexes along presently low-angle ductile-brittle normal faults commenced by the latest Oligocene-Early Miocene period, and; (2) late stretching of crust and, consequent graben evolution along Plio-Quaternary high-angle normal faults, cross-cutting the pre-existing low-angle normal faults. However, current understanding of the processes (tectonic quiescence vs N-S continental compression) operating during the short-time interval is incomplete. This paper therefore reports the results of recent field mapping and structural analysis from the NE of Küçük Menderes Graben—Kiraz Basin—that shed lights on the processes operating during this short-time interval. The data includes the thrusting of metamorphic rocks of the Menderes Massif over the Mio-Pliocene sediments along WNW-ESE-trending high-angle reverse fault and the development of compressional fabrics in the metamorphic rocks of the Menderes Massif. There, the metamorphic rocks display evidence for four distinct phases of deformation: (1) southfacing top-N ductile fabrics developed at relatively high-grade metamorphic conditions, possibly during the Eocene main Menderes metamorphism (amphibolite facies) associated with top-N thrust tectonics (D1); (2) top-S and top-N ductile gentle-moderatley south-dipping extensional fabrics formed at relatively lower-grade metamorphic (possibly greenschist facies) conditions associated with the exhumation of Menderes Massif along presently low-angle normal fault plane that accompanied the first phase of extension (D2); (3) moderately north-dipping top-S ductile-brittle fabrics, present configuration of which suggest a thrust-related compression (D3); and (4) south-facing approximately E-W-trending brittle high-angle normal faults (D4) that form the youngest structures in the region. It is interpreted that D4 faults are time equivalent of graben-bounding major high-angle normal faults and they correspond to the second phase of extension in western Anatolia. The presence of thrust-related D3 compressional fabrics suggests N-S compression during the time interval between the two phases of extension (D2 and D4). The results of the present study therefore support the episodic, two-stage extension model in western Anatolia and confirm that a short-time, intervening N-S compression separated the two distinct phases.  相似文献   
88.
Geological evidence for overpressure is common worldwide, especially in petroleum-rich sedimentary basins. As a result of an increasing emphasis on unconventional resources, new data are becoming available for source rocks. Abnormally high values of pore fluid pressure are especially common within mature source rock, probably as a result of chemical compaction and increases in volume during hydrocarbon generation. To investigate processes of chemical compaction, overpressure development and hydraulic fracturing, we have developed new techniques of physical modelling in a closed system. During the early stages of our work, we built and deformed models in a small rectangular box (40 × 40 × 10 cm), which rested on an electric flatbed heater; but more recently, in order to accommodate large amounts of horizontal shortening, we used a wider box (77 × 75 × 10 cm). Models consisted of horizontal layers of two materials: (1) a mixture of equal initial volumes of silica powder and beeswax micro-spheres, representing source rock, and (2) pure silica powder, representing overburden. By submerging these materials in water, we avoided the high surface tensions, which otherwise develop within pores containing both air and liquids. Also we were able to measure pore fluid pressure in a model well. During heating, the basal temperature of the model surpassed the melting point of beeswax (∼62 °C), reaching a maximum of 90 °C. To investigate tectonic contexts of compression or extension, we used a piston to apply horizontal displacements.In experiments where the piston was static, rapid melting led to vertical compaction of the source layer, under the weight of overburden, and to high fluid overpressure (lithostatic or greater). Cross-sections of the models, after cooling, revealed that molten wax had migrated through pore space and into open hydraulic fractures (sills). Most of these sills were horizontal and their roofs bulged upwards, as far as the free surface, presumably in response to internal overpressure and loss of strength of the mixture. We also found that sills were less numerous towards the sides of the box, presumably as a result of boundary effects. In other experiments, in which the piston moved inward, causing compression of the model, sills also formed. However, these were thicker than in static models and some of them were subject to folding or faulting. For experiments, in which we imposed some horizontal shortening, before the wax had started to melt, fore-thrusts and back-thrusts developed across all of the layers near the piston, producing a high-angle prism. In contrast, as soon as the wax melted, overpressure developed within the source layer and a basal detachment appeared beneath it. As a result, thin-skinned thrusts propagated further into the model, producing a low-angle prism. In some experiments, bodies of wax formed imbricate zones within the source layer.Thus, in these experiments, it was the transformation, from solid wax to liquid wax, which led to chemical compaction, overpressure development and hydraulic fracturing, all within a closed system. According to the measurements of overpressure, load transfer was the main mechanism, but volume changes also contributed, producing supra-lithostatic overpressure and therefore tensile failure of the mixture.  相似文献   
89.
A flat plate in pitching motion is considered as a fundamental source of locomotion in the general context of marine propulsion. The experimental as well as numerical investigation is carried out at a relatively small Reynold number of 2000 based on the plate length c and the inflow velocity U. The plate oscillates sinusoidally in pitch about its 1/3  c axis and the peak to peak amplitude of motion is 20°. The reduced frequency of oscillation k = πfc/U is considered as a key parameter and it may vary between 1 and 5. The underlying fluid-structure problem is numerically solved using a compact finite-differences Navier–Stokes solution procedure and the numerical solution is compared with Particle Image Velocimetry (PIV) measurements of the flow field around the pitching foil experimental device mounted in a water-channel. A good agreement is found between the numerical and experimental results and the threshold oscillation frequency beyond which the wake exhibits a reverse von Kármán street pattern is determined. Above threshold, the mean velocity in the wake exhibits jet-like profiles with velocity excess, which is generally considered as the footprint of thrust production. The forces exerted on the plate are extracted from the numerical simulation results and it is shown, that reliable predictions for possible thrust production can be inferred from a conventional experimental control volume analysis, only when besides the wake's mean flow the contributions from the velocity fluctuation and the pressure term are taken into account.  相似文献   
90.
Fold-thrust belts formed above a ductile detachment typically contain detachment folds, whereas those formed above frictional detachments contain fault-related fold complexes, such as imbricate thrust systems. Analog models, using silica sand to represent sediments and silicone gel to represent salt were conducted to study the fold geometry, fold-fault relations, and sequential development of structures formed in each setting and at the boundaries between the two settings. The results showed a relatively thinner wedge above a ductile detachment, so that the deformation front propagated farther forward than that above a frictional detachment. The thrust front connects across the two settings with a significant change in position and a resulting change in orientation. The geometry of the deformation front is strongly controlled by that of the detachment boundary, so that an oblique detachment boundary results in an oblique thrust front in the transition zone. Modifications in the taper geometry also result from the presence of a frictional belt behind a ductile belt, the width of the ductile detachment which limits the location of the deformation front, and the lateral propagation of thrust faults between the two regimes. The experimental models can be used to explain observed geometries in natural examples of fold-thrust belts marked by transitions between frictional and ductile detachments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号